
Panorama climático global e seus desafios

Contribuição das redes acadêmicas

Dr. Claudio Almeida

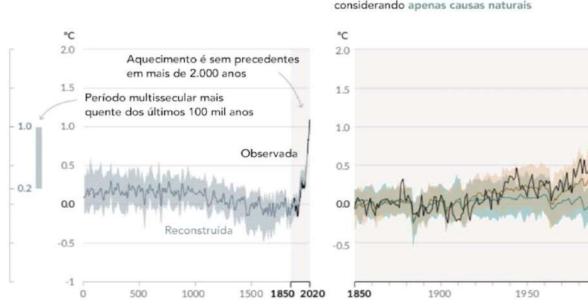
Influência humana

LÉ indiscutível que a influência humana tenha aquecido a atmosfera, oceano, criosfera e biosfera terrestre. Os aumentos das concentrações de GEE desde 1750 são inequivocamente causados por atividades humanas

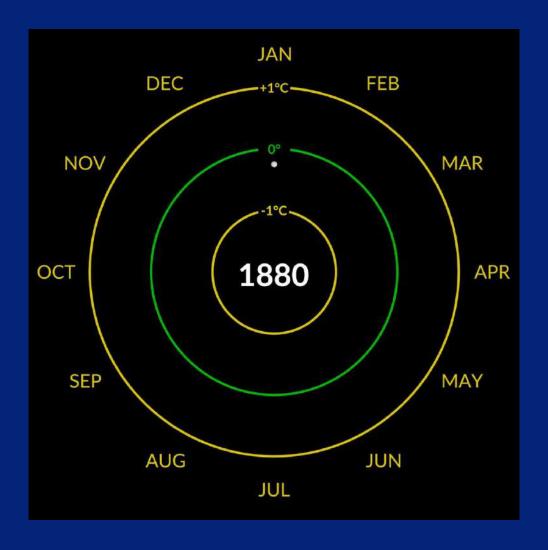
Influência humana

SIXTH ASSESSMENT REPORT

Working Group I - The Physical Science Basis

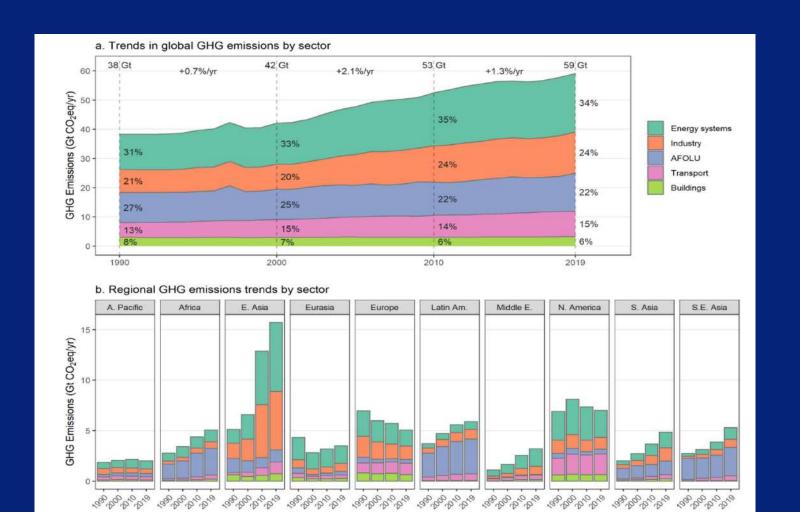

2000 2020

O homem tem aquecido o planeta a uma taxa sem precedentes há pelo menos 2.000 anos

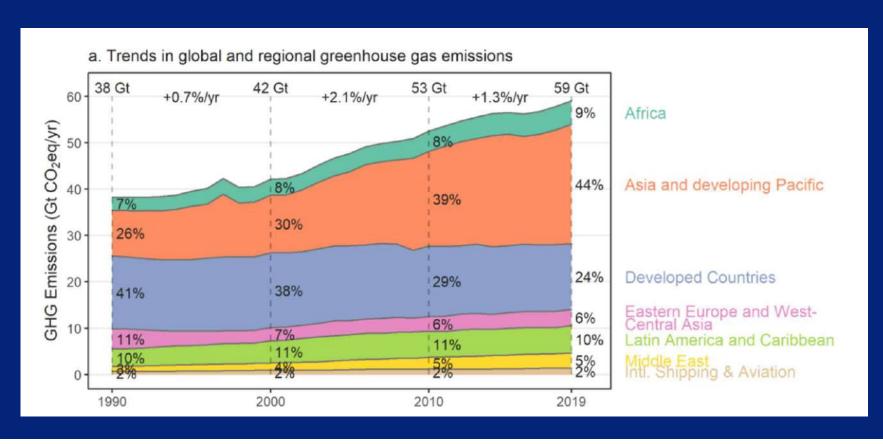

a) Mudança na temperatura

 b) Aquecimento global observado nos últimos 170 anos, considerando causas naturais e humanas e simulação considerando apenas causas naturais

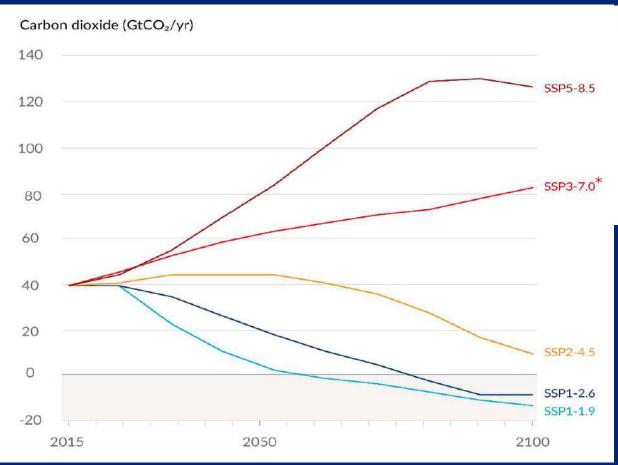
Influência humana

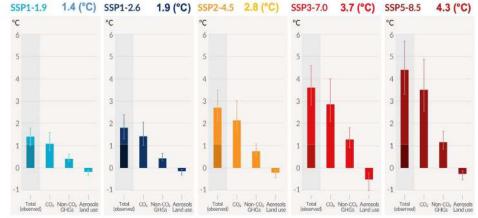


Principais Fontes de GEE



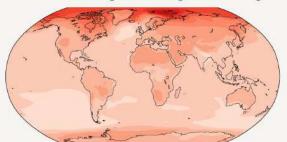
Emissões de GEE e repartição -1990-2019

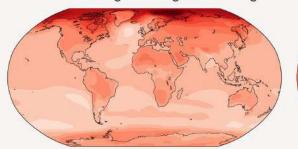




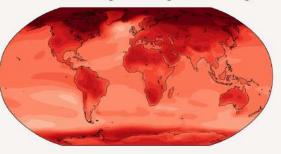
Trajetórias Indicativas de Emissões e Efeitos

* Cenário SSP3-7.0: Aumento no Brasil de 3 a 4°C em grandes áreas


Mudança na temperatura TICAL T níveis de aquecimento


b) Annual mean temperature change (°C) relative to 1850-1900

Across warming levels, land areas warm more than oceans, and the Arctic and Antarctica warm more than the tropics.


Simulated change at 1.5 °C global warming



Simulated change at 2 °C global warming

Simulated change at 4 °C global warming

Change (°C)

Mudanças observadas sistema climático

Changes are occurring throughout the climate system

Source: Figure 1.4, Chapter 1, Working Group I https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter01.pdf

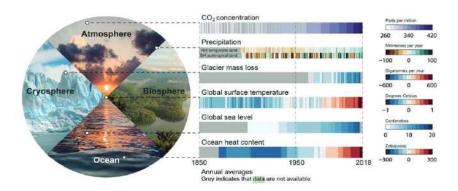


Table 1.5M.1 (Input data table, Your Estable, and code good to create chapter face)

Hipare member	Desared Code Name	New	File Norw Specificities	Liumatype	Desaure/ Codo Citation	Dates et Code URL	Publications/ Software Used	Notes
Figure 1.4	CO ₂ Annantic ineque	Tajaut du teset	952501 (Ap. 8935) (188601-0150) (S			https://eggs-bussinelle.cy.or/protection/de setsetlegg-bergetles-te-tops://potestion/ 5/2466-pc/2441_np-t/01/septemptoy.do	Carri ucul (1909), Bessina et al. (2015)	
	CO: shect six to reserve to	Trigue statuses	nat_best_glac			Tribe Menuter Creat group willing Creat.	Term and Keeling (2023)	
	Progration: Webs! Progration Climatology Centre (SIPCO VB	reput dotesalt	Receive (961 - 1900 acing land cross only, Lethado hands are 20%-90% and 15%-90%			tita dell'ana mobile, minimista pri fire	Section et al. (2013)	
	Olauter mass twee	Injurdenset	Jewp. 800 resilts. mg ten. gt.hulcito	Crative Convents Additional 4.0 triansational	Cition Cition	FER (FEE) (2752-2777) (2750-2617) (EE) (E)	3019 et d. (2019k)	
	Clotal Insur surface Integration (CATT) Hoday Control Climatic Resource Unit Tangoryses (HoCRUT) 5.0	(sput detaset	Bootine (901-1990	One Correspond		has conventable on about their or single-cuttowing and	Market et al. (2021)	
	Sectoral change	/nput datument	Bession 1900-1929			CHA MARIO SALAM SETTIN DETERMY ATTEM OF DEPENDENCE STREET OF MARIO CRANTO SEE JULIE SET MODERAL SALAM	Dangerskirl et al. (2015)	
	Decan heat content.	Traus duranet	Baselmo1941 -1086			bits dependences and considered com- traction that seems and that	Zamu ot at (2019)	

Supplementary material

https://www.ipcc.ch/report/ar6/wg1 /downloads/report/IPCC_AR6_W GI Chapter01 SM.pdf

Impactos Observados

Riscos Previstos

Estresse por calor

Exposição a ondas de calor continuarão a aumentar com aquecimento adicional.

Escasses de água

A 2°C, as regiões dependentes do degelo da neve podem experimentar um declínio de 20% na disponibilidade de água para agricultura após 2050.

Segurança Alimentar

A mudança do clima prejudicará cada vez mais a segurança alimentar.

Risco de Inundações

Cerca de um bilhão de pessoas em cidades baixas à beira mar e pequenas ilhas em risco até metade do século, devido a elevação do nível do mar.

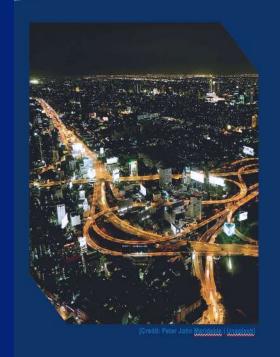
Riscos Previstos

Impacto negativo

Mudanças climáticas podem agravar 58% de 375 doenças infecciosas

Alteração	Número de doenças afetadas	Exemplos
Calor	16	Esquistossomose, dengue
Inundações	121	Febre amarela, leptospirose
Secas	81	Antraz, febres hemorrágicas
Aquecimento dos oceanos	43	Septcemia, cólera
Incêndios	21	Chicungunha, malária
Fonte: Nature Climate Change	0 100	200

Riscos Previstos



Estratégia de Combate

A menos que haja reduções imediatas, rápidas e em grande escala nas emissões de gases de efeito estufa, limitar o aquecimento a 2,0 ° C pode ser impossível.

Estratégia de Mitigação da Mudança do Clima

TICAL

Energia

- são necessárias grandes transições para limitar o aquecimento
- redução no uso de combustíveis fósseis e uso de captura e armazenamento
 - sistemas de energia de baixa ou sem carbono
 - eletrificação generalizada e eficiência energética melhorada
- combustíveis alternativos: e.g. hidrogênio e biocombustíveis sustentáveis
 - alcançar Zero líquido é desafiador e caro

Estratégia de Mitigação da TICAL TIC Mudança do Clima

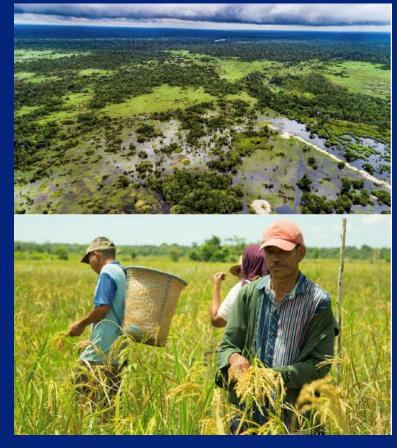
Indústria

- Usar materiais de forma mais eficiente, reusando, reciclando, minimizando desperdício
- Aplicar processos de produção de baixa ou zero emissões de GEE
- alcançar Zero líquido é desafiador e caro

Estratégia de Mitigação da TICAL TIC Mudança do Clima

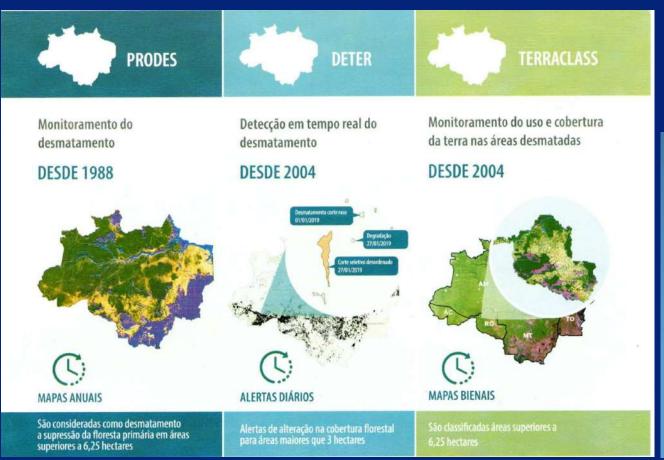
Cidades

- Melhorar planejamento urbano reduzir deslocamento, ampliar disponibilidade de modais com baixa emissão
- Aumentar remoção e armazenamento de carbono (espaços verdes, árvores)
- Alcançar Zero líquido é desafiador e caro


Estratégia de Mitigação da TICAL TIC Mudança do Clima

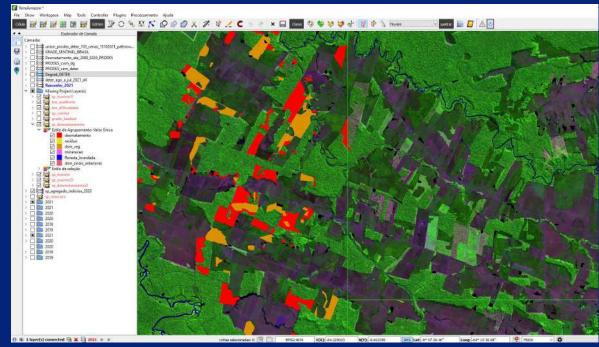
Uso da Terra

- Proteger e restaurar ecossistemas naturais para remoção de carbono
- Combater o desmatamento e a degradação florestal
- Alcançar Zero líquido é mais rápido e barato



Sistema BiomasBR - Inpe

Uso da Terra

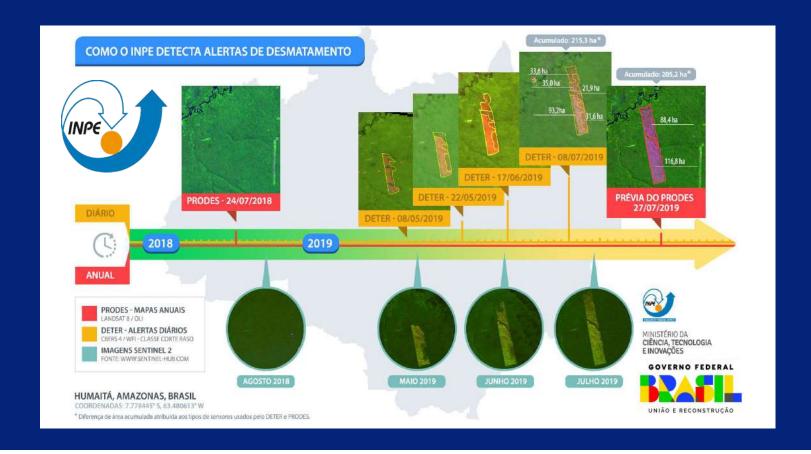

- Inpe mantém Sistemas de Monitoramento do desmatamento e das mudanças da cobertura e uso da terra

Sistema BiomasBR – Prodes

Almeida et al. Methodology for Forest Monitoring used in PRODES and DETER projects. 2022.

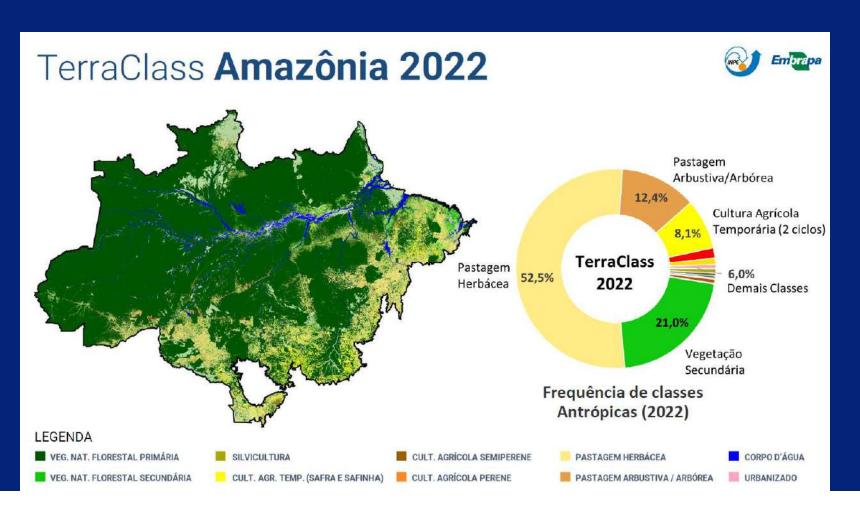
Prodes Sistema Anual

<u>Dado ofici</u>al do desmatamento do Brasil



Sistema BiomasBR – Deter

Alertas desmatamento e degradação florestal Dado expedito para equipes de fiscalização

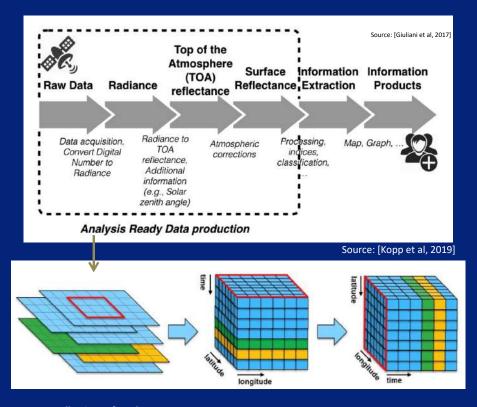


Sistema BiomasBR – TerraClass TICAL TICAL 2024

Parceria Inpe + Embrapa

Cloud computing environment

Big Data Analisys



(1) Analysis-Ready Data (ARD) of medium-resolution satellite images for Brazil: CBERS-4 Landsat 8 Sentinel 2.

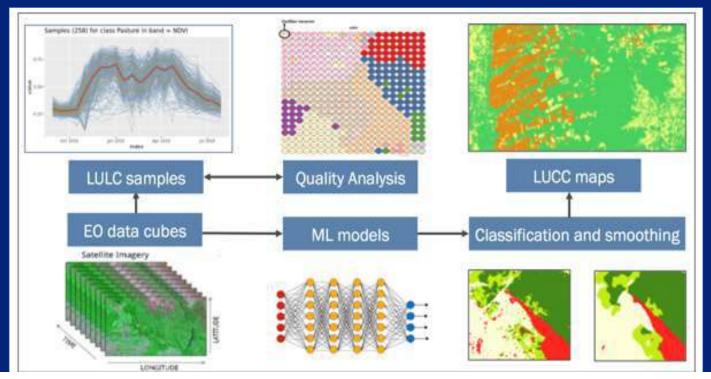
(2) Multidimensional data cubes.

CEOS Analysis Ready Data for Land: https://ceos.org/ard/index.html

Collections of Earth observation satellite imagens
- ARD

Data cubes - four-dimensional array.

Cloud computing environment


Al Analisys

SITS (Satellite Image Time Series)
R package

https://github.com/e-sensing

RNP's Research Network TICAL TICAL 2024

Mensagem Final

Nossas escolhas reverberarão por centenas, até mesmo milhares de anos

¡GRACIAS! **OBRIGADO!** THANKS!

¿Alguna pregunta? Alguma pergunta? Any questions?

